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Abstract The influence of predator exposure on the
survival of hatchery red drum, Sciaenops ocellatus
was investigated under laboratory conditions. Several
prey-capture (attack distance, mean attack velocity,
capture time, and gape cycle duration) and anti-
predator (reaction distance, response distance, mean
velocity, and maximum velocity) performance varia-
bles were quantified using high-speed video for
juvenile red drum (25–30 mm standard length, LS)
reared with and without predators (pinfish, Lagodon
rhomboides). Univariate contrasts of prey-capture
events demonstrated that attack distance (mean ± s.e.)
was significantly greater in red drum reared with
(1.20±0.16 mm) versus without (0.65±0.09 mm)
pinfish predators. During anti-predator events, red
drum reared with predators had approximately
300% greater reaction distance and 20%–30%
greater response distance, mean velocity and
maximum velocity versus fish reared without predators;
however, these differences were not statistically signif-
icant. Following video assessments, a series of mortality

experiments were conducted using free-ranging pinfish
predators. Mortality rates (Z) ranged from 0.047 to
0.060 (Z/hr/predator) and did not differ significantly
among treatments.
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Introduction

During early life marine teleosts typically experience
high levels of predation-related mortality, often
resulting in significant losses to a cohort (Houde
1987). Predation is a strong selective force, and its
pervasiveness over the course of an individual’s
lifetime has led to the development of various anti-
predator defenses. Many of these defenses are
behavioral in nature, including the ability to ‘freeze’
(Järvi and Uglem 1993; Brown and Smith 1998;
Lehtiniemi 2005), bury (Howell and Baynes 1993;
Kellison et al. 2000), school (Seghers 1974; Pitcher
and Parrish 1993) or use habitat refugia (Sogard and
Olla 1993; Kats and Dill 1998) when a predatory
threat arises. Fish react to predatory threat based upon
visual (Helfman 1989; Engström-Öst and Lehtiniemi
2004), chemical (Magurran 1989; Chivers and Smith
1994a; Kristensen and Closs 2004), and/or mechano-
sensory cues (Blaxter and Fuiman 1990; Fuiman
1994). While such behaviors are often considered to
be genetically based (Patten 1977; Giles 1984),
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increasing evidence suggests that anti-predator
responses are often learned or modified with experi-
ence (Magurran 1990; Magurran and Seghers 1990;
Kelley and Magurran 2003).

The ability of fish to ‘learn’ to respond to predatory
threat is of particular interest to hatchery managers
since fish produced for supplemental stocking are
often deficient in their ability to detect and avoid
predators (Olla et al. 1998). It has been argued that
these deficits arise as a result of the lack of predatory
stimuli in the rearing environment (Olla et al. 1998),
resulting in the production of naïve progeny that
experience high rates of mortality following release
(Kristiansen et al. 2000; Brown and Laland 2001).
Previous studies have demonstrated that exposure to
predatory stimuli, whether visual (Olla and Davis
1989; Suboski and Templeton 1989; Järvi and Uglem
1993) or chemical (Brown and Smith 1998; Vilhunen
2006), may significantly enhance anti-predator behav-
iors and overall survival in captive-reared species.
Nevertheless, few fisheries managers have applied
such techniques to hatchery-release programs and
many questions remain regarding the proper methods
and circumstances under which they should be
implemented (Brown and Laland 2001).

The purpose of this study was to determine
whether exposure to predators impacts the survival
of hatchery red drum, Sciaenops ocellatus. Red drum
is an important recreational species in the U.S. and is
currently the focus of several large-scale stock
enhancement programs in the Gulf of Mexico and
parts of the eastern seaboard (Smith et al. 2001). In
Texas alone, over 460 million red drum fingerlings
have been stocked into local bays and estuaries by the
Texas Parks and Wildlife Department (TPWD) since
the early 1980’s (Robert Vega, TPWD, pers. comm.);
however, there is little evidence that these fish
enhance natural populations (Scharf 2000). In both
laboratory (Rooker et al. 1998; Stunz and Minello
2001) and field studies (Serafy et al. 1999), hatchery
red drum have been shown to experience high rates of
predation. These individuals have also demonstrated
deficiencies in behaviors associated with predator
detection and avoidance (Smith and Fuiman 2004),
and this may be linked to the absence of predators in
the rearing environment. This study tested the
hypothesis that exposure to predators will impact
survival in hatchery red drum. Prey-capture and anti-
predator performance (i.e. survival skills) of hatchery

red drum reared with and without exposure to pinfish
(Lagodon rhomboides) predators were examined
using high-speed video. Additionally, mortality
experiments using free-ranging pinfish predators were
conducted in order to quantify the rate of instanta-
neous hourly mortality (Z) experienced by individuals
with and without predator exposure.

Materials and methods

Predators and prey

In May 2006, red drum were obtained from the
TPWD SeaCenter (SCT) hatchery in Lake Jackson,
Texas. These fish were spawned from SCT brood-
stock (2–3 females and 2–3 males per tank, 8 tanks)
under artificial temperature and photoperiod regimes.
Fertilized eggs were collected and reared in 12 000 l
tanks until three days post hatch (dph), when they
were transferred to a 2 acre polyethylene lined pond at
SCT. Fish used in this study were collected during
harvesting and randomly sampled from transport
trailers. Individuals were 25–30 mm standard length
(LS), encompassing current TPWD release sizes for
this species. Fish were immediately transported to a
wet-lab in Galveston, Texas, where they were
stocked into 37.5 l fiberglass tanks (1.5 m diameter,
0.75 m deep) containing sand-filtered water (26.5
to 29.2°C, 30 to 32 salinity) pumped from the Gulf
of Mexico. Fish were fed a mixture of commercial
pellet diets (Rangen and Otohime feeds), mysid
shrimp (Americamysis bahia, <4 mm total length)
and 2 and 3 day post-hatch brine shrimp (Artemia
franciscana) enriched with Algamac 2000 (www.
algamac.com) once daily.

Pinfish (L. rhomboides, 80–100 mm LS) were used
as predators in this study since evidence has shown
that they are natural predators of red drum larvae and
juveniles (Fuiman 1994; Rooker et al. 1998). Pinfish
were collected from Galveston Bay, Texas, using a
50 ft bag seine and transferred to separate tanks
(37.5 l) at the wet-lab in Galveston. Pinfish were fed a
mixture of live and dead shrimp once daily to
satiation, with food being withheld for 24 h prior to
the start of all trials to encourage active feeding
during exposure periods. Predators were held for less
than 1 wk before use in experiments to minimize the
impact of captivity on behavior.
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Predator exposure trials

Twenty-four hours after collection, red drum were
stocked into nine separate tanks at a density of 100
fish per tank (~88 fish/m3). Tanks represented three
treatments: with predator, without predator, and
control (sweep) (3 treatments × 3 replicates = 9
tanks). A seine net (1.5 m×1.5 m) was used three to
four times in each ‘control’ (sweep) treatment in order
to mimic the disturbance caused by capturing pinfish,
while those treatments designated as ‘without preda-
tor’ were left undisturbed. Pre-trial experiments
indicated that pinfish exhibited normal feeding
behaviors only when placed with another conspecific,
and pinfish dramatically reduced feeding levels on red
drum after 1 h. As a result, two free-ranging predators
were introduced into ‘with predator’ treatments for a
1 h period over the course of five days. New predators
were used for each trial to reduce any variability
which could be attributed to learning effects. To keep
densities consistent across all treatments as well as to
reduce any ‘culling’ effects on behavioral perfor-
mance (Patten 1977; Olla et al. 1992), several red
drum were randomly removed from without predator
and control tanks following each exposure period.

After exposure trials had been completed, three red
drum were randomly selected from each tank and
placed into separate chambers (18 cm×10 cm) con-
taining 3 cm of seawater. Following a 4–6 h acclima-
tion period, prey-capture and anti-predator
performance behaviors were quantified using a high-
speed (250 frames per second) videocamera (Redlake
MotionScope PCI 1000S). A 1 cm×1 cm grid was
used to provide scale during all filming events.

Prey-capture performance was evaluated by film-
ing individual red drum feeding on live mysid shrimp,
a major prey item for red drum larvae and juveniles
(Soto et al. 1998). Several mysid shrimp were
released into the chamber at a time and only those
feeding events during which red drum fed at a lateral
angle to the camera and remained in focus throughout
the entire event were used in the final analysis. Four
prey-capture variables were quantified: 1) attack
distance, distance from the tip of the premaxilla to
the closest point on the prey at the beginning of prey
capture, mm, 2) mean attack velocity, average red
drum velocity from time zero to when prey complete-
ly entered the mouth, mm/sec, 3) capture time, time to
when prey completely entered the mouth, ms, and 4)

gape cycle duration, time elapsed from time zero to
when mouth closes, ms.

Anti-predator performance of each red drum was
recorded while responding to a visual stimulus. The
stimulus consisted of a 4.5 cm diameter bulls-eye
target on a swinging pendulum arm that was modeled
after Batty (1989). This stimulus has previously been
shown to effectively produce escape responses in red
drum larvae and juveniles (Fuiman and Cowan 2003;
Smith and Fuiman 2004). Each chamber was placed
within a separate control box and red drum were
allowed to acclimate to the chamber for 20 min before
the stimulus was introduced. Anti-predator events
were filmed from above and began when the red drum
was near the front of the container and facing less
than 90° toward the direction of the stimulus. When
the red drum was in this position, the observer
released the stimulus, sending it towards the fish but
blocking it prior to making contact with the chamber.
In many cases, red drum either made contact with the
sides of the container or swam outside the field of
view during the course of an escape event; therefore,
only the first 100 ms of each event was analyzed. At
least 15 min were allowed between anti-predator
responses for each individual to prevent habituation
to the stimulus. Four anti-predator variables were
quantified: 1) reaction distance, distance between red
drum and center of target at time zero, mm, 2)
response distance, distance traveled during the first
100 ms of response, mm, 3) mean velocity, averaged
velocity over the duration of response, mm/sec, and 4)
maximum velocity, maximum velocity reached during
response, mm/sec.

After the completion of filming trials, red drum
were immediately anesthetized with tricaine metha-
nesulfonate (MS-222) and LS of each fish was
measured to the nearest 0.01 mm. An average of
three prey-capture and three anti-predator events were
recorded for each red drum (27 red drum total). These
events were saved to a PC hard drive and analyzed at
2–4× magnification using Redlake MotionScope
2.30.0 and Peak Motus 8.0 software. Prey-capture
events were referenced to time zero, corresponding to
the frame prior to mouth opening during feeding, and
the frame immediately preceding the first movement
away from the stimulus during anti-predator events.
Velocity measures were calculated by tracking a
digitized point on the center of the eye during prey-
capture events, and the center of mass during anti-
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predator events (~30% from tip of snout, verified
from preserved specimens). A generalized cross-
validatory (GCV) quintic spline algorithm was ap-
plied to the displacement data using QuickSAND
(Walker 1997) for accurate velocity measurements as
this algorithm has been shown to accurately estimate
velocity at the frame rate (250 fps) and magnification
(2–4×) used in this study (Walker 1998; Bergmann
and Irschick 2006).

Mortality experiments (Z)

Mortality experiments were conducted according to
the protocol outlined in Rooker et al. (1998). Twenty
red drum were randomly selected from each tank and
placed into separate tanks (3 treatments × 3 replicates =
9 tanks) at 16:00 h and allowed to acclimate for 15 h
before mortality experiments began. At 07:00 h the next
day, two pinfish predators were released into each tank.
After a 6 h period, pinfish were removed using a seine
net and the number of surviving red drum was recorded.
The remaining red drum were then captured and
anesthetized with tricaine methanesulfonate for mea-
surement purposes. Each tank was drained and refilled
with water to remove any chemical alarm cues before
beginning the next set of trials. Three mortality experi-
ments were conducted for a total of 9 replicates per
treatment and recovery trials were conducted after the
final mortality experiment in order to determine the
recovery rate of red drum in the absence of pinfish
predators (Rooker et al. 1998). The protocol for the
recovery trials was the same as the predation
experiments with the exception that no pinfish were
used. Due to limited numbers of remaining red drum,
only one set of recovery trials was conducted (3
treatments × 3 replicates × 1 trial).

Data analysis

All data were tested for normality and equality of
variance using Kolgomorov-Smirnov and Levene’s
tests, respectively. Data was regressed against LS of
each red drum in order to account for any differences
in size. Repeated-measures analysis of variance
(ANOVA) was conducted on the size-removed resid-
uals for each variable since red drum within the same
tank were not truly independent measures. Analysis of
variance for each variable on tank means, i.e. average
response of three individuals per tank, gave similar

results to repeated-measures ANOVA; therefore,
results are restricted to repeated-measures ANOVA.

The following equation was used during mortality
experiments to estimate instantaneous hourly mortal-
ity (Z/hr/predator):

Z ¼ ln Ni=Nf

� �� ln Ni=Ncð Þ� �
=T»P ð1Þ

where Ni indicates the initial number of prey stocked
within each tank, Nf is the final number of prey
recovered, Nc is the mean number of prey recovered
from tanks with no predators (Nc was 20 red drum or
100% for all recovery trials), T is the duration of the
experiment in hours, and P is the number of predators
added to each tank. This equation was the same used
by Rooker et al. (1998). One-way ANOVA was used
to test for differences in the instantaneous hourly
mortality (Z) among treatment groups (with predator,
without predator, control).

In the event that a significant treatment effect was
detected for either predator exposure trials or mortal-
ity experiments, Tukey’s HSD post hoc test was used
to determine which factor levels differed from one
another. Additionally, the amount of inter-individual
variability for red drum within each tank (n=3) was
measured for each prey-capture and anti-predator
variable. Variability was quantified using the coeffi-
cient of variation, expressed as a percentage (CV = S.D./
mean * 100). All statistics were conductedwith SYSTAT
(version 12.0) and SPSS (version 13.0) statistical
software and α=0.05.

Results

Predator exposure trials

Pinfish began actively pursuing red drum prey within
5–10 min after release. Red drum reared with
predators responded to predatory attacks by schooling
at the surface and becoming mottled in coloration,
indicating that fish were in distress. Such behaviors
were not observed for individuals from tanks without
predators. On average, two to five red drum were
consumed by pinfish during the 1 h exposure periods.
Final red drum LS (mean ± s.e.) were 30.33±0.29 mm
(with predator), 29.06±0.58 mm (without predator),
and 29.83±1.04 mm (control) and no significant
differences in LS were found among treatments
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(ANOVA, d.f.=2 and 6, P=0.482). The amount of
inter-individual variability (CV) was high, ranging
from 3.8% to 98.9% and 3.3% to 88.8% for prey-
capture and anti-predator performance variables,
respectively (Table 1).

Red drum prey-capture attempts were successful
≥95% of the time, regardless of treatment. Attack
distance (ANOVA, d.f.=2 and 6, P=0.025) and gape
cycle duration (ANOVA, d.f.=2 and 6, P=0.037)
differed significantly among treatment groups.
Tukey’s HSD test found that red drum reared with
predators had approximately 2× greater attack distance
than those reared without predators (Tukey, d.f.=2 and
6, P=0.022), while individuals from control treatments
exhibited longer gape cycle duration (5 ms) than those
reared without predators (Tukey, d.f.=2 and 6, P=
0.031) (Fig. 1a, d). Mean attack velocity (ANOVA,
d.f.=2 and 6, P=0.158, power=0.331) and capture
time (ANOVA, d.f.=2 and 6, P=0.249, power=
0.242) did not differ significantly among treatments;
however, both variables were greatest for red drum
reared with predators (Fig. 1).

No significant differences among treatment groups
were found for reaction distance (ANOVA, d.f.=2 and 6,
P=0.387, power=0.167), response distance (ANOVA,
d.f.=2 and 6, P=0.188, power=0.295), mean velocity
(ANOVA, d.f.=2 and 6, P=0.197, power=0.286), or
maximum velocity (ANOVA, d.f.=2 and 6, P=0.212,
power=0.272). Nevertheless, mean values for all four
variables were noticeably greater for red drum reared
with predators (Fig. 2). In particular, reaction distance

of red drum reared with predators was almost 3×
greater than that of red drum reared without predators
(Fig. 2a). Response distance, mean velocity, and
maximum velocity of red drum from predator treat-
ments were also 20%–30% greater for individuals
reared with predators (Fig. 2b, c, d).

Mortality experiments (Z)

Instantaneous hourly mortality (Z) rates of hatchery
red drum did not differ significantly among treatments
(ANOVA, d.f.=2 and 6, P=0.840, power=0.067).
Overall, mean Z (± s.e.) for the three predation
experiments were 0.056±0.009, 0.047±0.015, and
0.060±0.020, for with predator, without predator, and
control treatments, respectively. Daily Z rates were
highly variable among replicates as well as days
(Fig. 3). For example, red drum reared without
predators experienced greater mortality rates com-
pared to red drum reared with predators on day 1, yet
this trend was reversed on day 2 and day 3 (Fig. 3).

Discussion

During prey capture, several variables were found to
differ significantly among treatments (with predator,
without predator, control). Red drum reared with
predators attacked mysid shrimp from a further
distance compared to individuals reared without
predators. Greater attack distance may lower the

Table 1 Variability in prey-capture and anti-predator performance variables for hatchery red drum within each tank (n=3) as measured
by the coefficient of variation (CV = SD/mean * 100)

Variable w/ Predator w/o Predator Control

Tank 1 Tank 2 Tank 3 Tank 1 Tank 2 Tank 3 Tank 1 Tank 2 Tank 3

Prey-capture performance:

Attack distance (mm) 33.2 57.2 98.9 33.5 31.5 27.7 91.8 8.4 28.7

Mean attack velocity (mm/sec) 14.0 43.9 28.8 35.9 64.9 34.7 47.5 28.6 52.7

Capture time (ms) 17.3 11.9 35.3 13.9 10.2 20.0 28.6 19.9 17.6

Gape cycle duration (ms) 3.8 8.3 21.8 4.5 17.3 22.9 15.4 12.0 4.6

Anti-predator performance:

Reaction distance (mm) 27.4 88.8 59.5 11.5 35.8 45.4 7.1 38.8 8.3

Response distance (mm) 42.4 57.6 28.1 29.9 36.5 28.3 15.7 43.1 8.6

Mean velocity (mm/sec) 41.7 58.9 26.2 29.1 37.0 30.5 16.3 43.1 10.2

Maximum velocity (mm/sec) 38.9 65.5 25.9 3.3 9.7 17.1 8.0 26.4 12.8
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probability that prey may detect an approaching
predator (Hunter 1972; Heath 1993; MacKenzie and
Kiørboe 2000), possibly enhancing capture success.
The ability to attack from a further distance would be
especially beneficial when feeding on more elusive
prey items such as copepods as these zooplankters
possess a large number of mechanoreceptors (Kerfoot
et al. 1980). While the mechanism for this difference
is not clear, these results indicate that exposure to
predatory stimuli may impact feeding performance in
this species. Gape cycle duration was also found to be
significantly greater for red drum from control tanks
versus those reared without predators. It has been
suggested that a longer gape cycle may negatively
impact feeding performance by increasing the prey’s
chances of escape (Wintzer and Motta 2005); howev-
er, this did not appear to influence prey-capture ability
in red drum as feeding attempts were ≥95% across all
treatments. Although not significant, overall trends
indicated that mean attack velocity, capture time, and
gape cycle duration were all greater in red drum
reared with versus without predators. This suggested

that red drum reared with predators approached prey
more quickly, yet took longer to acquire prey during
feeding attempts.

Numerous studies have demonstrated that exposure
to live predators improves anti-predator behaviors in
naïve fish (Järvi and Uglem 1993; Malavasi et al.
2004). For example, Nødtvedt et al. (1999) reported
that ‘predator-trained’ cod (Gadus morhua L.) main-
tained longer distances to a predator than ‘predator-
naïve’ individuals, while Dill (1974) documented that
escape velocity of the zebra danio (Danio rerio
Hamilton) increased significantly in naïve fish fol-
lowing exposure to predatory stimuli. In this study,
hatchery red drum exposed to predators demonstrated
a 300% increase in reaction distance and 20%–30%
increase in response distance, mean velocity, and
maximum velocity relative to individuals receiving no
predator exposure; however these differences were
not significant. Greater distances and velocities during
anti-predator responses have been shown to increase
the chances of surviving a predation strike in the
guppy, Poecilia reticulata (Peters) (Walker et al.

w/ Predator w/o Predator Control w/ Predator w/o Predator Control

w/ Predator w/o Predator Control w/ Predator w/o Predator Control

A
tta

ck
 d

is
ta

nc
e 

(m
m

)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
ea

n 
at

ta
ck

 v
el

oc
ity

 (
m

m
/s

ec
)

60

80

100

120

140

160

180

200

C
ap

tu
re

 ti
m

e 
(m

s)

0

2

4

6

8

10

12

14

G
ap

e 
cy

cl
e 

du
ra

tio
n 

(m
s)

0

5

10

15

20

25

30

35

A 

 B 

    AB 

AB 
B 

  A 

(b)(a)

(d) (c) 
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2005). Fuiman et al. (2006) also demonstrated that
greater reactive distance and swimming speeds are
linked to escape potential in red drum.

Behavioral studies are often confounded by high
amounts of variability among individuals (Gregory

and Wood 1998; Kolok et al. 1998) as well as
populations (Nicoletto and Kodric-Brown 1999; Pon
et al. 2007). Here, the level of inter-individual
variability (CV) for red drum within each tank
(3.8%–98.9% and 3.3%–88.8% for prey-capture and
anti-predator variables, respectively) were much
higher than that reported for other species such as
coho salmon, Oncorhynchus kisutch (Walbaum)
(9.5%–16.6%, Taylor and McPhail 1985), yellow
perch, Perca flavescens (Mitchill) (9.7%–15.6%,
Nelson 1989), and Atlantic cod, Gadus morhua L.
(9.9%–35.4%, Reidy et al. 2000). Intra-cohort vari-
ability in performance has been documented for larval
red drum (Fuiman et al. 2005), and increased
variability may be related to the fact that red drum
were spawned from multiple breeding pairs in the
hatchery. These elevated CV values may have also
contributed to the low power (β<0.300) associated
with statistical tests, thus the lack of significant
findings in the present study may be linked to high
variability (low power).

Average mortality rates (Z/hr/predator) for juve-
nile hatchery red drum were approximately 3–4×
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lower than previously reported values for red drum
larvae (Z=0.192, 3.6–6.9 mm LS, Fuiman 1994) and
early juveniles (Z=0.193, 10.7–20.9 mm LS, Rooker
et al. 1998). Evidence suggests that responsiveness
to predatory stimuli increases with ontogeny in red
drum (Fuiman 1994) and other species such as
herring, Clupea harengus L. (Blaxter and Fuiman
1990). Moreover, the vulnerability of red drum to
piscivores has been shown to decrease substantially
when individuals exceed 20 mm in total length
(Fuiman 1994). Thus, the larger sizes of red drum in
this study (25–30 mm LS) may have influenced the
amount of predation within each tank, resulting in
lower Z rates compared to previous predation trials
for this species. Physical differences between this
study and others (container volume, De Lafontaine and
Leggett 1988; Cowan and Houde 1993; temperature,
Elliott and Leggett 1996, 1997) may have impacted the
degree of mortality experienced by red drum, and
therefore cannot be ruled out as possible sources of
variability. Interestingly, a high level of variability in Z
was detected among tank replicates as well as among
days. Rooker et al. (1998) and Fuiman (1994) also
documented variability for red drum mortality rates
among replicates when using pinfish predators, sug-
gesting that predator motivation may vary substantially
within this species.

This study indicated that predator exposure impacts
survival skills linked to prey-capture and anti-predator
performance in hatchery red drum. Experimental evi-
dence has shown that even a single exposure to
predatory stimuli enhanced survival behaviors in naïve
fathead minnows, Pimephales promelas (Rafinesque)
(Gazdewich and Chivers 2002), while repeated expo-
sure events were needed to produce similar responses
in Arctic charr, Salvelinus alpinus L. (Vilhunen 2006).
Thus the timing and duration of exposure needed for
naïve individuals to learn to avoid predators may vary
among species. In some cases, the use of chemical
cues, either alone (Brown and Smith 1998; Mirza and
Chivers 2001) or in combination with visual stimuli
(Chivers and Smith 1994a, b; Wisenden et al. 2004),
are necessary to train naïve fish to respond to predators
similar to that of their wild counterparts. Here, the use
of live predators allowed red drum to be subjected to a
variety of cues (e.g. visual, chemical, and mechano-
sensory) during exposure periods, all of which have
been shown to be important in the development of
predator detection and avoidance behaviors.

Although there are ethical concerns with using live
predators (Huntingford 1984), such methods may
provide the necessary stimuli in order to properly
train naïve individuals for subsequent predator-prey
encounters. Currently, no exposure protocol exists for
red drum; however, findings of this study suggest that
even short exposure durations (1 h/day for 5 days) can
influence survival behaviors, i.e. greater distances and
velocities, of naïve hatchery individuals. While these
results are encouraging, future studies should inves-
tigate whether longer exposure periods, exposure at
different ontogenetic stages and/or the use of alternate
predators or cues may lead to significant differences
in the survival behaviors of hatchery red drum.
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